【正棱柱、圆柱侧面展开】
正棱柱(底面是正多边形,侧棱与底面垂直的棱柱)和圆柱的侧面展开,摊在同一个平面上,是一个矩形。矩形的上、下对边,是柱体上、下底面的周长;矩形左右两对边,是柱体的侧棱或母线。
例如图1.41,将正六棱柱ABCDEF—A1A1A2A2。图中画出的是棱柱侧面展开图。圆柱侧面展开后,也是一矩形,只是中间没有那些虚线。
【正棱锥侧面展开】
正n棱锥(底面为正n边形,顶点与底面中心的连线垂直于底面的棱锥)侧面展开,摊在同一平面上,是顶点公共、腰与腰相连的n个全等的等腰三角形。
例如图1.42,将正三棱锥S—ABC的侧面展开,摊在同一个平面上,便形成了三个全等的等腰三角形SAB、SBC和SCA
【圆锥侧面展开】
圆锥侧面展开,摊在同一个平面上,变成的是一个扇形。扇形的弧长是圆锥底面圆的周长,扇形的两条半径,是圆锥的母线。
例如图1.43,将圆锥SO的侧面展开,摊在同一个平面上,便成了扇形
径SA、SA
式中r是圆锥底面圆半径,l是圆锥母线的长。
【正棱台侧面展开】
正n棱台(用一平行于正n棱锥底面的平面去截棱锥,截面和底面间的几何体)侧面展开,摊在同一个平面上,得到的是n个全等的等腰梯形,并且腰腰相连。
例如图1.44,将正三棱台ABC—A
【圆台侧面展开】
圆台侧面展开,摊在同一个平面上的图形,是圆环的一部分,叫做“扇环”。这个扇环像梯形,它的两“腰”是圆台的母线,它的上、下“底”是两条弧,其弧长分别是圆台上、下底面圆的周长。
例如图1.45,将圆台O1O2的侧面展开,摊在同一个平面上,就形成
⚠️免责声明:本文来自投稿,不代表潇湘读书社立场,如若转载,请注明出处:https://www.xiaoxiangguan.cc/51746.html
⚠️侵权声明:如有侵权请发送邮件至:xiaobing1945@163.com 反馈,我们将尽快处理。
⚠️转载声明:若需转载,请保留原文链接并附出处,谢谢合作。
⚠️侵权声明:如有侵权请发送邮件至:xiaobing1945@163.com 反馈,我们将尽快处理。
⚠️转载声明:若需转载,请保留原文链接并附出处,谢谢合作。